Name of the Course: Linear Algebra

Syllabus:

Unit I

Symmetric and Skew symmetric matrices - Hermitian and Skew Hermitian Matrices – Orthogonal and Unitary matrices - Rank of matrix - Eigen values and Eigen vectors of Linear operators – Cayley Hamilton theorem - Solutions of Homogeneous linear equations – Solutions of non homogenuous linear equations.

Section 1.2: Hermitian and Skew Hermitian Matrices

Definition 1.2.1: Conjugate Matrix

Let $A = (a_{ij})$ be any given matrix. The conjugate of the complex matrix is defined by $\overline{A} = \overline{(a_{ij})}$

Example: Let $A = \begin{pmatrix} 1 & -2i \\ 2+3i & -1 \end{pmatrix}$. Then $\overline{A} = \overline{\begin{pmatrix} 1 & -2i \\ 2+3i & -1 \end{pmatrix}} = \begin{pmatrix} 1 & 2i \\ 2-3i & -1 \end{pmatrix}$

Definition 1.2.1: Conjugate Transpose of a Matrix

Let $A = (a_{ij})$ be any given matrix. The conjugate transpose of the complex matrix is defined by $A^* = (\overline{A})^T = \overline{(a_{ij})}^T$ or $A^* = \overline{(A^T)}$

Example: Let
$$A = \begin{pmatrix} 1 & -2i \\ 2+3i & -1 \end{pmatrix}$$
. Then $\bar{A} = \overline{\begin{pmatrix} 1 & -2i \\ 2+3i & -1 \end{pmatrix}} = \begin{pmatrix} 1 & 2i \\ 2-3i & -1 \end{pmatrix}$
 $A^* = \begin{pmatrix} 1 & 2i \\ 2-3i & -1 \end{pmatrix}^T = \begin{pmatrix} 1 & 2-3i \\ -2i & -1 \end{pmatrix}$

Theorem 1.2.2

Let A and B are Complex matrices. Then their product AB is defined.

(i)
$$\overline{AB} = \overline{A}.\overline{B}$$
 (ii) $(AB)^* = B^*A^*$ (iii) $(\overline{A})^{-1} = \overline{(A^{-1})}$ (iv) $(A^*)^{-1} = (A^{-1})^*$

Proof:

(i) $\overline{AB} = \overline{a_{\iota 1}}$

Let $A = (a_{rs})_{m \times n}$ and $B = (b_{kl})_{n \times p}$. Then their product AB is defined. (i,j) th entry of \overline{AB} is

$$\overline{AB} = \overline{a_{i1}b_{1j} + \cdots + a_{in}b_{nj}}$$

$$= \overline{a_{i1}b_{1j}} + \overline{a_{i2}b_{2j}} + \dots + \overline{a_{in}b_{nj}}$$

$$= \overline{a_{i1}}\overline{b_{1j}} + \overline{a_{i2}}\overline{b_{2j}} + \dots + \overline{a_{in}}\overline{b_{nj}}$$

$$= (i,j) \text{ th entry of } \overline{A} \cdot \overline{B}$$

$$\overline{=} \overline{A} \cdot \overline{B}$$
(ii) $(AB)^* = (\overline{A} \cdot \overline{B})^T$

$$= \overline{B}^T \cdot \overline{A}^T$$

$$= B^* A^*$$

(iii) W.k.t
$$I = \overline{I} = \overline{AA^{-1}} = \overline{A}\overline{A^{-1}}$$

 $I = \overline{A} \overline{A^{-1}}$ Implies that $(\overline{A})^{-1} = \overline{(A^{-1})}$

(iv)
$$(A^*)^{-1} = ((\bar{A})^T)^{-1}$$

= $\overline{(A^T)^{-1}}$
= $\overline{(A^{-1})^T}$
= $(A^{-1})^*$

Problem 1.2.3 : Prove that $(iA)^* = -iA^*$

Solution:

Let
$$A = (a_{rs})$$

Then $(iA)^* = (ia_{rs})^*$
 $= (\overline{ia_{rs}})^T$
 $= -i(\overline{a_{sr}})$
 $= -iA^*$

Hence the result.

Definition 1.2.4: Hermitian Matrix

A Complex Matrix $H = (h_{ij})$ is called Hermitian Matrix if it satisfies the condition if $H = H^*$. $\implies h_{ij} = \overline{h_{ji}}$ for every i and j.

Definition 1.2.5: Skew Hermitian Matrix

A Complex Matrix $S = (s_{ij})$ is called skew - Hermitian Matrix if it satisfies the condition if $S = -S^*$. $\Rightarrow s_{ij} = -\overline{s_{ji}}$ for every i and j.

Problem 1.2.3 : Check whether the following matrix is Hermitian matrix.

$$H = \begin{pmatrix} 1 & 2+3i & -1 \\ 2-3i & \sqrt{5} & \sqrt{2}+i \\ -1 & \sqrt{2}-i & 3/2 \end{pmatrix}$$

Solution: Given that $H = \begin{pmatrix} 1 & 2+3i & -1 \\ 2-3i & \sqrt{5} & \sqrt{2}+i \\ -1 & \sqrt{2}-i & 3/2 \end{pmatrix}$
$$H^{T} = \begin{pmatrix} 1 & 2-3i & -1 \\ 2+3i & \sqrt{5} & \sqrt{2}-i \\ -1 & \sqrt{2}+i & 3/2 \end{pmatrix}$$
$$\overline{H^{T}} = \begin{pmatrix} 1 & 2+3i & -1 \\ 2-3i & \sqrt{5} & \sqrt{2}+i \\ -1 & \sqrt{2}-i & 3/2 \end{pmatrix}$$

$$\overline{H^T} = H.$$