Name of the Course: Linear Algebra

Syllabus:

Unit I

Symmetric and Skew symmetric matrices - Hermitian and Skew Hermitian Matrices

- Orthogonal and Unitary matrices - Rank of matrix - Eigen values and Eigen vectors of Linear operators - Cayley Hamilton theorem - Solutions of Homogeneous linear equations - Solutions of non homogenuous linear equations.

Section 1.2: Hermitian and Skew Hermitian Matrices

Definition 1.2.1: Conjugate Matrix

Let $A=\left(a_{i j}\right)$ be any given matrix. The conjugate of the complex matrix is defined by $\bar{A}=\overline{\left(a_{l \jmath}\right)}$

Example: Let $A=\left(\begin{array}{cc}1 & -2 i \\ 2+3 i & -1\end{array}\right) . \quad$ Then $\bar{A}=\overline{\left(\begin{array}{cc}1 & -2 l \\ 2+3 l & -1\end{array}\right)}=\left(\begin{array}{cc}1 & 2 i \\ 2-3 i & -1\end{array}\right)$

Definition 1.2.1: Conjugate Transpose of a Matrix

Let $A=\left(a_{i j}\right)$ be any given matrix. The conjugate transpose of the complex matrix is defined by $A^{*}=(\bar{A})^{T}={\overline{\left(a_{\iota \jmath}\right)}}^{T}$ or $A^{*}=\overline{\left(A^{T}\right)}$

Example: Let $A=\left(\begin{array}{cc}1 & -2 i \\ 2+3 i & -1\end{array}\right) . \quad$ Then $\bar{A}=\overline{\left(\begin{array}{cc}1 & -2 l \\ 2+3 l & -1\end{array}\right)}=\left(\begin{array}{cc}1 & 2 i \\ 2-3 i & -1\end{array}\right)$

$$
A^{*}=\left(\begin{array}{cc}
1 & 2 i \\
2-3 i & -1
\end{array}\right)^{T}=\left(\begin{array}{cc}
1 & 2-3 i \\
-2 i & -1
\end{array}\right)
$$

Theorem 1.2.2
Let A and B are Complex matrices. Then their product $A B$ is defined.
(i) $\overline{A B}=\bar{A} \cdot \bar{B}$
(ii) $(A B)^{*}=B^{*} A^{*}$
(iii) $(\bar{A})^{-1}=\overline{\left(A^{-1}\right)}$
(iv) $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$

Proof:
(i) $\overline{A B}=\overline{a_{l 1}}$

Let $A=\left(a_{r s}\right)_{m \times n}$ and $B=\left(b_{k l}\right)_{n \times p}$. Then their product AB is defined.
(i, j) th entry of $\overline{A B}$ is

$$
\begin{aligned}
\overline{A B} & =\overline{a_{l 1} b_{1 \jmath}+\cdots a_{i n} b_{n j}} \\
& =\overline{a_{l 1} b_{1 \jmath}}+\overline{a_{l 2} b_{2 \jmath}}+\ldots+\overline{a_{l n} b_{n \jmath}} \\
& =\overline{a_{l 1}} \overline{b_{1 \jmath}}+\overline{a_{l 2}} \overline{b_{2 \jmath}}+\ldots .+\overline{a_{l n}} \overline{b_{n \jmath}} \\
& =(\mathrm{i}, \mathrm{j}) \text { th entry of } \bar{A} \cdot \bar{B} \\
& =\bar{A} \cdot \bar{B}
\end{aligned}
$$

(ii) $\quad(A B)^{*}=(\bar{A} \cdot \bar{B})^{T}$

$$
\begin{aligned}
& =\bar{B}^{T} \cdot \bar{A}^{T} \\
& =B^{*} A^{*}
\end{aligned}
$$

(iii) W.k.t $I=\bar{I}=\overline{A A^{-1}}=\bar{A} \overline{A^{-1}}$

$$
I=\bar{A} \overline{A^{-1}}
$$

Implies that $(\bar{A})^{-1}=\overline{\left(A^{-1}\right)}$
(iv) $\quad\left(A^{*}\right)^{-1}=\left((\bar{A})^{T}\right)^{-1}$

$$
\begin{aligned}
& =\overline{\left(A^{T}\right)^{-1}} \\
& =\overline{\left(A^{-1}\right)^{T}} \\
& =\left(A^{-1}\right)^{*}
\end{aligned}
$$

Problem 1.2.3 : Prove that $(i A)^{*}=-i A^{*}$

Solution:

Let $A=\left(a_{r s}\right)$
Then $(i A)^{*}=\left(i a_{r s}\right)^{*}$

$$
\begin{aligned}
& =\left(\overline{l a_{r s}}\right)^{T} \\
& =-i\left(\overline{a_{s r}}\right) \\
& =-i A^{*}
\end{aligned}
$$

Hence the result .

Definition 1.2.4: Hermitian Matrix

A Complex Matrix $H=\left(h_{i j}\right)$ is called Hermitian Matrix if it satisfies the condition if $H=H^{*} . \Rightarrow h_{i j}=\overline{h_{\jmath \iota}}$ for every i and j .

Definition 1.2.5: Skew Hermitian Matrix

A Complex Matrix $S=\left(s_{i j}\right)$ is called skew - Hermitian Matrix if it satisfies the condition if $S=-S^{*} . \Rightarrow s_{i j}=-\overline{s_{j l}}$ for every i and j .

Problem 1.2.3: Check whether the following matrix is Hermitian matrix.

$$
H=\left(\begin{array}{ccl}
1 & 2+3 i & -1 \\
2-3 i & \sqrt{5} & \sqrt{2}+i \\
-1 & \sqrt{2}-i & 3 / 2
\end{array}\right)
$$

Solution: Given that $H=\left(\begin{array}{ccc}1 & 2+3 i & -1 \\ 2-3 i & \sqrt{5} & \sqrt{2}+i \\ -1 & \sqrt{2}-i & 3 / 2\end{array}\right)$

$$
\begin{aligned}
H^{T} & =\left(\begin{array}{ccc}
1 & 2-3 i & -1 \\
2+3 i & \sqrt{5} & \sqrt{2}-i \\
-1 & \sqrt{2}+i & 3 / 2
\end{array}\right) \\
\overline{H^{T}} & =\left(\begin{array}{ccc}
1 & 2+3 i & -1 \\
2-3 i & \sqrt{5} & \sqrt{2}+i \\
-1 & \sqrt{2}-i & 3 / 2
\end{array}\right) \\
\overline{H^{T}} & =H .
\end{aligned}
$$

